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Scope

• This work deals with a meaning of the potentials and

gauge transformations in classical electromagnetics.

• In majority of EM course textbooks Maxwell equations

are postulated from the empirical basis featuring the use

of electric and magnetic fields as quantities of interest.

• EM potentials are treated as auxilliary mathematical

functions being neither unique nor measurable, thus not

having any physical meaning.



• The problem of uniqueness is handled by gauge

transformations.

• The choice of different gauge conditions is often

considered to be governed by pure mathematical

conveniences not affecting the electric and magnetic

fields.

• These fields are then regarded as gauge invariant.

Scope



• In modern physics the principle of gauge invariance is

considered to be the keystone for any physical field.

• From this view the gauge conditions could be regarded

as continuity equations in electromagnetics.

• This obvious ambiguity and dichotomy have become a

rather hot topic in both history and philosophy of physics.

Scope

The vector potential is the mathematical quantity which can

be considered as the fundamental quantity of the

electromagnetic theory.

James Clerk Maxwell



• In classical electromagnetics the potentials are not

regarded as unique quantities and, therefore, are not

measurable physical quantities.

• They are viewed as merely mathematical constructs not

represent physically existing fields.

• The electric field and magnetic field can be readily

defined in terms of potentials A and φ as they are

invariant under certain gauge transformations.

• Therefore, contrary to the potentials, the fields are

uniformly determined.

Introduction



• Invariance, or symmetry, represents a change in system

which does not affect the action integral, or the equation

of motions while gauge principle is considered to be a

central concept in fundamentals of theoretical physics.

• In classical electromagnetics one starts from Maxwell’s

equations treating them as mathematical representations

of experimentally discovered natural laws.

• The continuity equation is then considered as a

consequence of Maxwell’s equations.

Introduction



• Within this approach the fields are gauge invariant,

while potentials are just auxiliary functions - pure

mathematical constructs without proper physical

meaning.

• An opposite approach is mathematically also possible,

i.e. if one exploits symmetry properties of the

Lagrangian, and thus easily introduces potentials.

• Using such an approach it is possible to derive continuity

equation, Lorenz force and Maxwell’e equations from a

proper Lagrangian.

Introduction



• In quantum physics A represents a fundamental quantity

in the Schrodinger equation for a charged particle and in

interactions occurring in quantum electrodynamics.

• Some authors addressed certain experiments

demonstrating the reality and importance of potentials in

quantum physics.

• Within the famework of theory of relativity featuring

covariant formulation magnetic vector potential is

composed with scalar potential into the four potential.

Introduction



• The problem of physical meaning of scalar potential is

appreciably less pronounced as it can be easily

understood as potential energy per unit charge.

• J. C. Maxwell considered vector potential to be a stored

momentum per unit charge and named it

electromagnetic momentum.

• Thomson shared a similar attitude and considered vector

potential as appropriate field momentum per unit

charge.

Introduction



• Nowadays dominant view in classical electromagnetics

textbooks came from Heaviside and Hertz.

• Independently from each other they rewrote the original

20 scalar Maxwell's equations into modern vector form.

• They both treated vector potential as nonphysical,

artificial quantities convenient only for easier calculations

of physicaly existing electric and magnetic fields.

Introduction



• This work discusses a possible meaning of magnetic

vector potential and Lorenz gauge by which vector

potential is mathematically completely determined.

• Equation of continuity, expressing the conservation of

charge, stemming from symmetry of the Lagrangian in

classical mechanics is addressed and then Lorenz

gauge is discussed.

• It is shown that Lorenz gauge can be considered as a

continuity equation for potentials and how this gauge

is associated with equation of continuity for charge and

current density, respectively.

Introduction



• Lagrangian L in classical mechanics is defined as

difference between kinetic energy (Wkin) and potential

energy (Wpot) of the system.

• According to the symmetry of the Lagrangian a total time

derivative may be added to L without changing the

equation of motion, one can define a new Lagrangian L'

Continuity equation and vector 

potential  from gauge invariance
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• For the point particle the charge density ρ can be written

• In the next step, the current density can be expressed as

charge in motion, i.e.

• Integrating over volume V yields
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• Performing total differentiation with respect to time

Lagrangian (2) can be written as follows

where:

• Note that 0 –komponent pertains to time, while 1, 2 and

3 denote x, y and z component.
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Λ – arbitrary function of

Continuity equation and vector 

potential  from gauge invariance

, 

J 
- current four-vector assigned to the particle

• It can be written:

• As the zero label pertains to time component, it follows

where ρ is the volume charge density.
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• Furthermore, it can be written

• Now a new four-vector (four-potential) can be introduced

and the new Lagrangian can be written as follows

Continuity equation and vector 

potential  from gauge invariance
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• One has

where

which can be wriiten as following set of equations:

where A and A' stand for magnetic vector potential,

while φ denotes the electric scalar potential.
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• Therefore, A’ and A satisfy all the equations and result in

same (physically existing) fields.

• Aμ is not determined by any prescribed initial condition,

therefore, a part of Aμ, i.e. its one degree of freedom

does not have a physical meaning.

• This spurious degree of freedom can be eliminated by

imposing a constraint, or so-called gauge condition, such

as the Lorenz gauge.

Continuity equation and vector 

potential  from gauge invariance
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• Now, Lagrangians L0 and L’0i are equivalent if the

following condition is satisfied

which can be written in the standard form

• This is equation of continuity relating charge and current

densities, derived from the gauge invariance of classical

mechanics (symmetry property of the Lagrangian).
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• Conservation of electric charge is a consequence of the

Lagrangian gauge invariance.

• The same result could be obtained from total

electromagnetic Lagrangian

where

Continuity equation and vector 
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• Faraday tensor is given by

• In the standard vector notation the total electromagnetic

Lagrangian density can be written as

• Lagrangian density can be easily shown to contain four

Maxwell equations.

Continuity equation and vector 

potential  from gauge invariance
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• Magnetic vector potential is to a certain extent

associated with total momentum of the charged particle.

• For a charged particle moving along one axis (i) of

rectangular coordinate system by a velocity vi a

Lagrangian can be written in the form

where Wpot and qφ are different contributions to

potential energy.

The meaning of vector potential 
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• The canonical momentum pi is defined as

where can be regarded as generalized

momentum being conserved under certain conditions.

• This generaliezd momentum is now composed from well-

established linear momentum mvi and quantity qAi

which can be referred to as EM momentum which is, in

accordance to the Maxwell-Thomson view of magnetic

vector potential, the stored momentum per unit

charge.

The meaning of vector potential 
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• Expressing the electric and magnetic fields in terms of

scalar and vector potential

Gauss law for the electric field

can be now written

The meaning of Lorentz  gauge 
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• In addition, from the generalized Ampere's law

one obtains

• Taking into account identity

It follows
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• Now, it follows

• Choosing Lorentz gauge

one deals with wave equation for potentials.

• In covariant formalism one has

or where
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• Therefore, Lorentz gauge leads to the set of

nonhomogeneous wave equations for scalar and vector

potential, respectively:

• Now, assuming that J and ρ represent all sources within

a volum V' the solution of of the potential wave equations

can be expressed by following particular integrals:
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• The variables 

pertaining to 

source and 

observation point, 

respectively, are 

shown in Fig 1.

The meaning of Lorentz  gauge 

Fig.1. The source point and observation point



• What is the meaning of Lorenz gauge?

• To come up with an answer it is helpful to write a

counterpart in in the frequency domain

• For time-harmonic dependence set of equations the

retarded potentials simplfy into

The meaning of Lorentz  gauge 
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• Now, one has

which can be written

or, using the Green finction notation one has
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• Now, as is always different from zero one

obtains

which is a frequency domain counterpart of 
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• Therefore, equation

or its frequency domain counterpart

essentially represents the continuity equation for

potentials.

• This could be regarded as a 'missing' physical meaning

of Lorentz gauge one may look for.
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• The nature of the potentials and gauge transformations

in classical electromagnetics is discussed in this work.

• In the most commonly used approach in textbooks on

electromagnetics Maxwell equations dealing with the

fields and their sources are postulated from the empirical

basis.

• Within such an approach the potentials are derived from

Maxwell's equations as purely mathematical construct

aiming to provide one with more efficient calculation tool

for fields.

Conclusion



• These potentials are neither unique nor measurable

quantities and, consequently, are not considered to have

a physical meaning.

• The problem of uniqueness is handled by gauge

transformations, while different gauge conditions are

often considered as pure mathematical conveniences

not affecting the electric and magnetic fields.

Conclusion



• In addition to the fact that the principle of gauge

invariance is considered to be crucial for the rigorous

mathematical description of fields in contemporary

physics it is also shown that Lorenz gauge could be

regarded as continuity equation for potentials.

• Finally, physical meaning of magnetic vector potential

is associated with electromagnetic momentum, while

scalar potential is regarded as energy per unit

charge.

Conclusion
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