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ON THE STORED ENERGY IN THE ANTENNA ELECTROMAGNETIC 

FIELD AND CORRESPONDING LIMITS IN THE TRANSFER OF 

INFORMATION  

 

 

Abstract: The paper reviews some fundamental concepts of the energy 

conservation in the electromagnetic field stemming from Hamilton 

principle in electromagnetics and Poynting theorem with particular 

emphasis to the analysis of the correlation of the stored energy in the 

antenna electromagnetic field with fundamental limits arising from the 

antenna dimensions. Of particular interest is to address correlation 

between electric/physical dimensions of the antenna and Q-factor and 

radiation efficiency, which is crucial for the assessment of maximum 

information transfer. Presented theoretical concepts are illustrated for the 

case of Hertz dipole. 
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Introduction 
 

Fundamental limits in antenna operation deal with antenna dimensions and 

relationship between its stored and irradiated energy [1-2], respectively. Though 

there is a sort of correlation of stored energy and dissipated (radiated) energy in 

antenna theory with energy usable for useful work and reactive energy, or what is 

more in use, active power and reactive power, there are some important distinctions 
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and related physical consequences, as has been discussed in [2]. On the other hand, 

the most rigorous approach to address the issue of antenna behavior is to use 

Hamilton principle and the Poynting theorem expressing the conservation law of the 

electromagnetic field energy. An important engineering parameter in assessing the 

fundamental limits of antennas is the quality factor (Q-factor) connected with actual 

antenna bandwidth. There are different expressions for Q-factor in literature but, for 

time-harmonic radiators, such as Hertz dipole, its definition generally pertains to the 

ratio of stored energy and dissipated energy per cycle [3]. There are also some 

controversies regarding the definition of stored energy in the vicinity of the antenna 

[1-2].  

Various aspects of this issue have been of interest starting from the very beginning 

of radiocommunications from early 20th century to the contemporary issues 

pertaining to wireless communications and Internet of Things (IoT) [1]. 

This paper revisits the derivation of the integral form of Poynting theorem for time-

harmonic dependent quantities. Next, for the case of radiation of Hertz dipole in free 

space the calculation of Q-factor is carried out using the apparent (complex) power 

defined as the surface integral over complex Poynting vector. 

Thus, the Q-factor is derived simply as a ratio between imaginary and real part of 

complex power, respectively as suggested in [1]. It is worth noting that complex 

power directly arises from the integral form of Poynting theorem.     
 

 

1. General Law of Conservation of Electromagnetic Energy – Poynting 

theorem  

 

Using the principle of least action in classical electromagnetics, that is by 

minimization of corresponding action integral the of Maxwell equations can be 

obtained. Furthermore, the general conservation law of energy in the macroscopic 

electromagnetic field can be readily derived from curl Maxwell equations.  

Starting from divergence of Poynting vector 

 

                                                       𝛻 ⋅ (�⃗� × �⃗⃗� ) = �⃗⃗� ⋅ 𝛻 × �⃗� − �⃗� ⋅ 𝛻 × �⃗⃗�                 (1) 

 

where E and H denotes the electric and magnetic field, respectively, while D and B 

represents electric and magnetic flux density, respectively. 

 Combining (1) with first two curl Maxwell equations yields: 

                 

                                             𝛻 ⋅ (�⃗� × �⃗⃗� ) = −
𝜕

𝜕𝑡
(
�⃗� ⋅�⃗⃗� +�⃗⃗� ⋅�⃗� 

2
) − �⃗� ⋅ 𝐽                          (2) 

 

Taking the volume integral over (2) it follows  

 

                         ∫ 𝛻 ⋅ (�⃗� × �⃗⃗� )
𝑉

𝑑𝑉 = −
𝜕

𝜕𝑡
∫ (

�⃗� ⋅�⃗⃗� +�⃗⃗� ⋅�⃗� 

2
)

𝑉
𝑑𝑉 − ∫ �⃗� ⋅ 𝐽 

𝑉
𝑑𝑉                    (3) 
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For a battery with a non-electrostatic field E’ the corresponding current density J can 

be written: 

 

                                                                     𝐽 = 𝜎(�⃗� + �⃗� ′)                                            (4) 

 

Furthermore, applying the Gauss integral theorem to the left-hand side term, the 

volume integral transforms to the surface integral over the boundary, where 𝑑𝐴 is the 

outward drawn normal vector surface element, that is one obtains  

 

   ∫ �⃗� ′ ⋅ 𝐽 𝑑𝑉 =
𝑉

𝜕

𝜕𝑡
∫

1

2
(�⃗� ⋅ �⃗⃗� + �⃗⃗� ⋅ �⃗� )𝑑𝑉 + ∫

|𝐽 |

𝜎
𝐽 𝑑𝑉

𝑉
′ + ∮ (�⃗� × �⃗⃗� ) ⋅ 𝑑𝐴 

𝐴𝑉
               (5) 

 

     The sources within the volume of interest are balanced with the rate of increase of 

electromagnetic energy in the volume, the rate of flow of energy in through the 

domain surface and the Joule heat production in the domain.  

For the time-harmonic quantities the complex Poynting vector is given by 

 

                                                                         𝑆 =
1

2
(�⃗� × �⃗⃗� ∗)                                (6) 

 

and taking the divergence of Poynting vector yields 

 

                                                𝛻 ⋅ 𝑆 =
1

2
(�⃗⃗� ∗ 𝛻 × �⃗� − �⃗� 𝛻 × �⃗⃗� ∗)                                       

(7) 

 

The divergence of complex power density can be expressed in terms of rate of stored 

energy, power lossess and sources, as follows:   

 

                                𝛻 ⋅ 𝑆 = −𝑗
𝜔

2
(𝜇|�⃗⃗� |

2
− 𝜀|�⃗� |

2
) −

|𝐽 |

𝜎
+

1

2
𝜎|�⃗� ′|

2
                         (8) 

 

Integrating over a volume of interest one obtains 

 

 ∫ 𝛻 ⋅ 𝑆 
𝑉

𝑑𝑉 = −𝑗
𝜔

2
∫ (𝜇|�⃗⃗� |

2
− 𝜀|�⃗� |

2
)

𝑉
𝑑𝑉 = −

1

2
∫ |

𝐽 

𝜎
|
2

𝑉
𝑑𝑉 +

1

2
∫ 𝜎|�⃗� ′|

2

𝑉
𝑑𝑉        (9) 

 

And applying the Gauss theorem it follows 

 

  
1

2
∫ �⃗� × �⃗⃗� ∗
𝐴

𝑑𝐴 = −𝑗
𝜔

2
∫ (𝜇|�⃗⃗� |

2
− 𝜀|�⃗� |

2
)

𝑉
𝑑𝑉 = 

= −
1

2
∫ |

𝐽 

𝜎
|
2

𝑉
𝑑𝑉 +

1

2
∫ 𝜎|�⃗� ′|

2

𝑉
𝑑𝑉                                                                           (10) 
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It is convenient to separate the real part and imaginary part of (10), that is the 

Poynting flow can be written as follows:  

 

                         
1

2
𝑅𝑒 ∫ �⃗� × �⃗⃗� ∗

𝐴
𝑑𝐴 = −

1

2
∫ |

𝐽 

𝜎
|
2

𝑉
𝑑𝑉 +

1

2
∫ 𝜎|�⃗� ′|

2

𝑉
𝑑𝑉                  (11) 

 

                               
1

2
𝐼𝑚 ∫ �⃗� × �⃗⃗� ∗

𝐴
𝑑𝐴 = −

𝜔

2
∫ (𝜇|�⃗⃗� |

2
− 𝜀|�⃗� |

2
)

𝑉
𝑑𝑉                 (12) 

 

The real part of the integral over Poynting vector represents the total average power 

while the imaginary part of the integral over Poynting vector is proportional to the 

difference between average stored magnetic energy in the volume and average stored 

energy in the electric field. 

The ½ factor appears because E and H fields represent peak values, and it should be 

omitted for root-mean-square (rms) values.  

The total average power can, for example represent the radiated power by an antenna. 

In addition, the first volume integral on the right-hand side of (11) represents power 

loss in the conduction currents and it just twice the average power loss. 

 

 

2. Determination of the Q-factor 

 
The complex (apparent) power Ps, according to the notation of circuit theory, 

is given by left-hand side of (10): 

 

                                                       𝑃𝑠 =
1

2
∫ �⃗� × �⃗⃗� ∗
𝐴

𝑑𝐴                                           (13) 

 

and can be written, as follows: 

 

 

 

                                           𝑃𝑠 = 𝑃𝑟𝑎𝑑 + 𝑗2𝜔(𝑊𝐸 − 𝑊𝑀)                                      (14) 

 

where WE and WM are the energy stored in electric field and magnetic field: 

 

                                                  𝑊𝐸 =
1

4
∫ 𝜀|�⃗� |

2
𝑑𝑉

𝑉
                                                 (15) 

 

                                                  𝑊𝑀 =
1

4
∫ 𝜇|�⃗⃗� |

2

𝑉
𝑑𝑉                                                    (16) 

 

The Q factor is defined, as follows [1] 
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                                            𝑄 = |
𝐼𝑚(𝑃𝑠)

𝑅𝑒(𝑃𝑠)
| =

2𝜔(𝑊𝐸−𝑊𝑀)

𝑃𝑟𝑎𝑑
                                                   (17) 

 

Therefore, the Q-factor directly stems from the Poynting theorem and is simply 

obtained by the ratio of imaginary and real part of complex power (surface integral 

over complex Poynting vector). Thus, numerator represents active power in the 

notation of circuit theory, or average radiated power in the notation of the 

electromagnetic field theory, while the denominator  pertains to the reactive power 

or measure of the energy stored in the electric and magnetic field, respectively.   

 

 

3. Quality factor Q of Hertz Dipole in Free Space 

 

Hertz dipole of physical length Δl, as electrically small antenna (ESA) represents the 

simplest radiating system. The geometry of Hertz dipole in free space with uniform 

current I0 along the wire is shown in Fig 1.  

 

 
Fig. 1. Hertz dipole in free space 

 

 

The complete electromagnetic field components radiated by Hertz dipole in free 

space are:  

                                                                                                                                                                                                                                       

𝐸𝑟(𝑟, 𝜃) = 𝑍0
𝐼0𝛥𝑙

2𝜋𝑟2 [1 +
1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 𝑐𝑜𝑠 𝜃                                                     (18) 

 

     𝑬𝜽 = 𝒋𝒁𝟎
𝒌𝑰𝟎𝜟𝒍

𝟒𝝅𝒓
(𝟏 +

𝟏

𝒋𝒌𝒓
−

𝟏

(𝒌𝒓)𝟐
)𝒆−𝒋𝒌𝒓 𝒔𝒊𝒏𝜽                                                     (19) 
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                 𝑯𝝓 = 𝒋
𝒌𝑰𝟎𝜟𝒍

𝟒𝝅𝒓
(𝟏 +

𝟏

𝒋𝒌𝒓
) 𝒆−𝒋𝒌𝒓 𝒔𝒊𝒏𝜽                                                                         (20) 

 

where k is a phase constant, and Z0 is the free space impedance. 

Note that ESA implies an antenna inside a sphere of radius a =1/k. the minimum 

radius of a sphere, a, which encloses a lossless antenna, is related to the maximum 

quality factor of the antenna, Q. As it is well-known, ESA positioned within a given 

volume has relatively small value of Q which corresponds to a limit of its impedance 

bandwidth. 

The complex Poynting vector (6) for Hertz dipole is: 

 

𝑆 =
1

2
(�⃗� × �⃗⃗� ∗) =

𝐼2(𝛥𝑙)2

32𝜋2 𝜔𝜇
(𝑘𝑟)3−𝑗

𝑟5𝑘2 𝑠𝑖𝑛2 𝜃 ⋅ 𝑒 𝑟 − 𝑗
𝐼2(𝛥𝑙)2

32𝜋2

1+𝑟2𝑘2

𝑟5𝑘
𝑠𝑖𝑛(2𝜃) ⋅ 𝑒 𝜃    (21) 

 

and, consequently, by integrating (21) one obtains the apparent power for r=a: 

 

 𝑃𝑠 = ∫ ∫
𝐼2(𝛥𝑙)2

32𝜋2 𝜔𝜇
(𝑘𝑟)3−𝑗

𝑟5𝑘2 𝑠𝑖𝑛2 𝜃 ⋅
𝜋

0

2𝜋

0
𝑟2 𝑠𝑖𝑛 𝜃 𝑑𝜃𝑑𝜙 =

𝐼2(𝛥𝑙)2

12𝜋
𝜔𝜇 (𝑘 − 𝑗

1

𝑘2𝑎3) (22) 

 

 

The Q factor as defined by (17) is then [1]: 

 

 

                                        𝑄 = |
𝐼𝑚(𝑃𝑠)

𝑅𝑒(𝑃𝑠)
| =

2𝜔(𝑊𝐸−𝑊𝑀)

𝑃𝑟𝑎𝑑
=

𝐼2(𝛥𝑙)2

12𝜋𝑘2𝑎3𝜔𝜇

𝐼2(𝛥𝑙)2

12𝜋
𝑘𝜔𝜇

=
1

𝑘3𝑎3              (23) 

 

Note that the minimum value radius of a sphere a is related to the maximum value of 

quality factor of the antenna Q. 

 

 

 
Conclusion 

 

The paper reviews some fundamental concepts of the energy stored in the 

antenna electromagnetic field pertaining to the fundamental limits corresponding to 

the antenna size. Of particular interest is to analyze a correlation between 

electric/physical dimensions of the antenna and Q-factor. Maxwell equations can be 

obtained from the least action principle in classical electromagnetics and the general 

law of the energy conservation in the macroscopic electromagnetic field can be 

readily derived from two curl Maxwell equations. Finally, the quality factor (Q-

factor) is obtained from the Poyinting theorem as the ratio of imaginary and real part 

of complex power (surface integral over complex Poynting vector) for the case of  

Hertz dipole in free space. 
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O POHRANJENOJ ENERGIJI U ELEKTROMAGNETSKOM POLJU 

ANTENE I PRIDRUŽENIM OGRANIČENJIMA U PRIJENOSU 

INFORMACIJE 

  

 

 
Sažetak: U radu se razmatraju fundamentalni koncepti očuvanja energije u 

elektromagnetskom polju u vidu Hamiltonovog principa u elektromagnetizmu i 

Poyntingovog teorema, s posebnim fokusom na analizu poveznice energije 

pohranjene u elektromagnetskom polju antene te fundamentalnih ograničenja koja 

proizlaze iz dimenzija antene. Posebno je od interesa prodiskutirati korelacije između 

električkih i fizičkih dimenzija antene te njenog faktora dobrote i efikasnosti zračenja 

što je ključno za procjenu maksimalnog mogućeg prijenosa informacije. Provedena 

je demonstracija izloženih teorijskih koncepata na primjeru Hertzovog dipola. 

 

 

Ključne riječi: Hamiltonov princip, Poyntingov teorem, pohranjena energija, 

temeljna ograničenja antena     
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