Cable Fault Location on long HVAC and HVDC Cable Systems

Dr. Frank Petzold
Dominik Nowak
Matthias Müller
Challenges in cable fault location on HVAC and HVDC cable systems

- Cable fault location (CFL) is a process
- Different types of possible cable faults (CF) asks for various number of test methods
- Today's base of experience is still limited
- Characteristics of CF can change with time and during the test
- Big influence of laying conditions and HVAC system design

► All CFL methods have limitations and needs to be adopted to specific environment of HVAC and HVDC cable systems
Prelocation of cable faults

- **Time Domain Reflectometry (TDR)**
 - CFL up to 500km cable length possible with good TDR equipment
 - Well proven on low-resistance faults
 - Correction methods for damping and dispersion important for long cables
 - Documented reference fingerprint traces are very helpful
Prelocation of cable faults

- **Arc Reflection Method (ARM)**
 - Limited to ca. 40 km cable length
 - Method is well proven on high-resistance faults (makes them low-ohmic)
 - Inductive HV filter design provide a good ARC stabilization and multiple TDR traces are used for selection of the best trigger point.
Prelocation of cable faults

- ICE and DECAY
 - Well proven on high resistance faults with certain DC withstand voltage
 - Strongly dependent on cable fault condition
 - Surge Generator up to 80 kV with high energy used
 - Limited for fault distances up to 30 km due to physics

![Diagram of fault location process]

Fault → Fault Identification → Prelocation → Cable Tracing → Pinpointing → Cable Identification → Repair
Prelocation of cable faults

- **Burning methods**
 - Fault conditioning with high voltage and high current to achieve low ohmic status
 - 40kV/25kVA burning transformer well proven in combination with TDR on difficult faults
 - Provides a TDR capability up to 500 km cable length
Prelocation of cable faults

- **Bridge Method**
 - Highly dependent on cable design -> AC cables with Graaf Method
 -> DC cables with Murray Method (correction of different cable parameter needed)
 - Reliable cable data crucial for precise prelocation
 - Long distance fault location possible
 - Voltage drop method provide easier application of Murray Method

![Diagram of Graaf Method](image1)

![Diagram of Murray Method](image2)

Fault ➔ Fault Identification ➔ Prelocation ➔ Cable Tracing ➔ Pinpointing ➔ Cable Identification ➔ Repair
Cable tracing on HVAC and HVDC cables

- **Audio frequency**
 - 200W Transmitter with D-Class Amplifier and various frequencies
 - Special inductive coupling system for low frequencies
 - Normal Receiver used on Land Cables and Shallow Water
 - Special Audio Frequency Receiver installed on ROV for deep water application
Pinpointing of cable faults on HVAC and HVDC cables

- **Acoustic location**
 - Noise cancelation technology important
 - Combined analysis of acoustic and magnetic impulse most promising method
 - Installation inside ducts and pipes makes pinpointing challenging on land cables
Safety Issues

• Safe discharge in case of charged cables

 • In case of fault confirmation with DC voltage and no breakdown
 • In case of surging and no discharge at the fault place
 • Discharge energy: \(P = \frac{U^2 C}{2} \)

Example: 100 km cable length with app. 25 \(\mu F \) capacitance
 DC voltage for fault confirmation 130 kV
 -> in case of no breakdown/flash over - > the Energy of \(422 \text{ kJ} \) must be discharged safely